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ELASTOPLASTIC TORSION OF A CYLINDRICAL ROD FOR FINITE DEFORMATIONS* 

N.KH.ARUTYUNYAN and YU.N.RADAYEV 

A solution of the problem of the torsion of a cylindrical rod was 
obtained in /l/ for a general, isotropic, incompressible elastic 
material. The present paper gives an analytical solution of the 
elastoplastic torsion problem for finite deformations, written in terms 
of quadratures of elliptic functions. The non-linear kinematics of 
elastoplastic deformation is introduced into the defining equations with 
the help of a multiplicative decomposition of the deformation gradient 
into elastic and plastic components /2, 31. The elastic deformation and 
rate of plastic deformation are related to the state of stress of the 

body, in accordance with the defining Mooney-Rivlin equations /4/ and 
the law of flow for finite deformations associated with the Tresca yield 
condition /5/. A non-linear first--order partial differential equation 
and the initial data at the elastoplastic boundary are obtained in order 
to determine the angle of rotation within the plastic zone of the basis 
formed from the eigenvectors of the stress tensor, relative to the 
radial direction. The integration of the resulting equation is reduced 
to determining the general integral of the Ricatti equation with 
right-hand side determined from the angular velocity of flow of the 
material within the plastic zone. It is shown that neglecting the 
finiteness of the deformation leads to too high an estimate of the 
rigidity of the rod. 

1. Non-linear kinematics of elastoplastic deformation. The deformation of an elastoplastic 
body from its natural (undeformed) state is described by the mapping x =x (X,h) where x 
denotes the position occupied by the point X of the reference configuration after the defor- 
mation, and h is the loading parameter. We introduce the following notation: F = Gradx is 
the deformation gradient, B = FFT is the left Cauchy-Green deformation tensor, V = B'iz is 
the left tensile tensor, v (x, A) is the spatial velocity field and L = gradv is the 
spatial velocity gradient. A dot denotes material differentiation with respect to h. 

We also introduce, as the basic kinematic characteristics of the elastoplastic defor- 
mation, the elastic deformation gradient F" and plastic deformation gradient F" /2, 31. The 
separation of the total deformation into its elastic and plastic component is based on the idea 
of the configuration of the elastoplastic body completely free of internal stresses (such a 
configuration is placed mentally in 1:l correspondence with every actual configuration and is 
determined by the mapping x = x(p,h)). Since the stresses in this configuration are equal to 
zero, it follows that the mapping p:p(X,h) d t e ermines a purely plastic deformation, while 
the mapping x = x(p,h) determines a purely elastic one. The rule of differentiation of a 
composite mapping leads to multiplicative decomposition of the deformation gradient /2/ 

F = F'FP (1.1) 
The factors F" and FP are not defined single-valuedly since an arbitrary local rotation 

of the elements in the configuration completely free from internal stresses again yields a con- 
figuration in which every element of the body is load-free. Therefore we can assume without 
loss of generality that the polar expansion of the Cauchy tensor F" does not contain an orthog- 
onal multiplier /3/, i.e. Fe =Ve. Differentiating with respect to h the multiplicative 
decomposition of the deformation gradient and taking into account the fact that L = F'F-' /4/, 
we obtain L = F"‘F"-' I FeF"'F"m'Fe-1 

(1.2) 

We introduce the tensor L"whichis a spatial plastic deformation rate gradient: L" = 
FP'FP-1. The symmetric part of the tensor L" is denoted by DP and is called the plastic 
deformation rate tensor. Solving (1.2) for 1~" and taking the symmetric parts from both sides 
of the resulting tensor equation, we obtain 

UP = sym[Ve-"(L -- VeV-l)Ve] 
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where sym A is the symmetric part of the tensor A. Using (1.3) we introduce the kinematics 
of elastoplastic deformation into the defining equation of elastoplastic media. 

The kinematics of elastoplastic deformation were first constructed in /5/. The con- 
struction was based on the additive decomposition of the deformation tensor which is defined 
in the accompanying (convective) coordinate system as the difference of the metric coefficients 
corresponding to the reference and the actual configuration. The same approach was used in 

/6/. 

2. Comptete reiktions between the vetocity field and the stresses in an etastoptastic 
medium. The yield condition for an ideal elastoplastic material has the form 

f (a) = k (2.1) 
where e is the Cauchy stress tensor and k is the yield point. We have the following defining 
equation in the Rivlin form /4/ for the points of the body which deforms elastically for all 
values of the load parameter h up to the yield point, under the conditions of incompress- 
ibility: 

D = - p1 + Z,B + Z_,B”, fW<k (2.2) 

where I is the unity tensor, p is the hydrostatic pressure and Z,, Z_, are the coefficients 
of reaction of a hyperelastic material. In the region of plastic flow (f(o) = k) the total 
deformation gradient is written in the form (1.1). The elastic tensor Fe is determined in 
terms of the stress tensor from an equation analogous to (2.2) 

e = - pI + &Fe2 + B_,(F"")-' (2.3) 

The law of flow under finite deformations associated with yield condition (2.1) has the 
form /5/ (A is an undetermined multiplier) 

DP = haflao (2.4) 

From (1.3) and (2.4) it follows 

sym [Fe-l (L - F-‘Fedl) F”] = haf/do (2.5) 

We can obtain the complete relations between the velocity field and the stresses in an 
elastoplastic medium by inverting (2.3) and substituting the result into (2.5) /7/. We note 
that the Euler velocity field occurs in the complete relations through the gradient L, and in 
the form of a convective term in the expression for the material derivative Fe’. In what 
follows we shall assume that the coefficients of reaction of a hyperelastic material are con- 
stants (a Mooney-,Rivlin material /4/): % = CL V, + p), Z-, = -P (‘4 - B), P.> 0, I B I Q % We 
will use, as the yield condition, the Tresca criterion of the greatest tangential stress. 

We also note that Eqs.(2.4) and (2.5) hold only if active loading takes place at the 
yield point f (a) = k, tr ](8f/ao) u'] = 0 

In the case when f (u),<k, or 
f(a) = k, tr ](af/acr) (I'] <0 

(i.e. in the last case we have the unloading after the elastoplastic state has been reached), 
the multiplier A is equal to zero. Thus the complete relations between the velocity field and 
the stresses during unloading have the form 

sym [F'+(L -- Fe'Fe-l) Fe] =O 

where we should replace the tensor Fe by its expression in terms of the Cauchy stress tensor 
(I in accordance with (2.3). 

3. Finite eZastopZastic deformations of a cyZindrica2 rod under torsion. Let us consider 
a cylindrical rod made of incompressible elastoplastic material. We will denote by R, the 
radius of cross-section of the rod in its natural (unstressed) state, and we shall use this 
state as reference. 

The purely elastic deformation of a rod under torsion is determined by the mapping /l, 4/: 
r = E-‘laR, 0 = 6 + DZ, r = EZ. Here R, 8,Z are the cylindrical coordinates in the reference 
configuration and in space respetively, D is the torsion and E is the elongation. The 
physical non-zero components of the Cauchy stress tensor are given by the formulas 

fJrr = 11zXlD2r2 + A, G-e = urr f Z,D2r2 

o,, = o,, - (E-l - E2)Z1 + (E-2 + D2E-lr2 - E)Z_, 

~1 = DEr (2, - ET_,) 

(3.1) 

The Rivlin's solution contains the constant A, which is found from the boundary condition 
a rl =0 at r = E-‘JaR,, in the case when all the material of the rod deforms elastically, and 
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from the condition that the stress tensor remains continuous during the passage across the 
elastoplastic boundary (whose equation can be written by virtue of the symmetry of the problem, 
in the form r = c) in the case when the region of plastic flow exists; 

Let us analyse the elastic solution. The orthonormal basis I', m’,n’ 
eigenvectors of 

consisiting of the 
the stress tensor, can be obtained as a result of rotating, by an angle .+I, 

the orthononned basis relative to the vector e,. is given 
equation 

e,, ee, e, The angle $' by the 

tg$' = 2DEr {[(Der” + E-’ + Ea)a - 4EJ’h + DV + E-1 _ .lp)-1 (3.2) 

The principal stresses cl, a2, as are given in terms of the squares of the principal 
strains as follows: 

ai = -_P + U*aZ, + Vi-‘Z_, (3.3) 

~~2 = ~1, 2us,38 = DZre + E-l + E8 =t [(Dar2 + E-l + ES)% - 4,qv. 

It can be shown that the inequalities v,'> vl'> va2, hold for the squares of the principal 
strains, therefore the modulus of the greatest tangential stress, by virtue of (3.3), will be 
equal to */2(a2 - as) or 

1 %c,,, ) = 1/z (2, - E-‘&) [(D”r* + E-l + E2)2 - 4E]‘l* 
(3.4) 

The quantity 1 %,a~ 1 is an increasing function of 21. The greatest tangential stress 
acts on an area with the normal v' = cos ($' - n/4)e, - sin (9' - nl4)ee. The value of the elongation 
E* and torsion D*, for which the greatest tangential stress at the contour of the cross- 
section of the rod first reaches its yield point k, is found from the following system of 
equations: 

(E*'- 1) [('/a + P) E* i '/z - 81 = ',',D*aR,2[(1,', + 8) E* -+ 1 - 281 

(2k)Z (2, - E*-‘XJa = [(D*aR,s + 1) E*-1 + &*a]2 _ 4~* 

It can be shown that the above system has a solution and its root E* satisfies the 
inequality E* > 1. The corresponding torsional moment has the value 

M* = l!,nD*E*-‘R,d (Z, - E*-‘X-J 

When the load is increased further, a region of plastic flow appears within the cross- 
section of the rod. We choose, as the load parameter, h = E, in which case the twist, 
torsional moment and the radius of the elastic kernel will all be functions of E. Within the 
elastic region we have the Rivlin solution (3.1). The Euler velocity field has the following 
physical components: 

v, = -r/(2E), vg = D’rz!E, u, = ziE (3.5) 

The actual position of the elastoplastic boundary r = c, of the twist and the 
elongation, must satisfy the equation 

(ik)’ (& - E-‘Z_,)-* = (DV + E-1 f E2)2 _ 4E, E > E* 

which follows from (3.4), and the condition of continuity of the stress tensor at r = c. 
We will make a series of assumptions concerning the stress and velocity fields in the 

plastic region, whose validity will be confirmed by constructing a solution of the problem 
based on these assumptions. 

1) the orthonormalized basis I", mu, nN of the eigenvectors of the stress tensor is 
obtained by rotating the basis e,, ee, e, by a certain angle +," about the vector e,, and the 
relation qn = 9' must hold when r = c; 

2) the angle $" and the principal stresses c1r oz> 03 (as well as the principal elastic 
strains VP, vzc. uQr) are functions of r and E only; 

3) the radial component of the velocity 
(E) rz. 

U, depends only on r and h', U: = "cc (E) z, ~1” = ,I 

By virtue of the above assumptions we can write the physical non-zero components of the 
stress tensor in the following form: 

a =ul, oee=o, - 2k sinz$" 
uiz z u2 - 2k co? $“, uez = k sin 2~" 

(3.7) 

The equations of equilibrium now reduce to a single equation fthe remaining equations 
are satisfied by virtue of the choice of hydrostatic pressure p /4/j: 

a (ru,)/dr = u2 - 2k sin2Q" (3.8) 



Integrating (3.8) we obtain 

ur= (a,-aa,-2ksinP9")r*dr s (3.9) 

Using the defining relations (2.3), we can express the difference between the principal 
stresses ca - ol in terms of the principal elastic strains 

u2 -- CT1 = (v*e* - v,ez)z, + (l/v," - l/v,")X_, 

Substituting the last expression into (3.9) we conclude that the stress tensor in the 
plastic zone is determined by the principal elastic strains vie, v," and the angle a". In 
order to determine the eight unknown functions e, vae, vae, $", vI, ve, v,, A, we obtain a system 
of six first-order partial differential equations'ffrom the tensor Eq.(2.5), and we must sup- 
plement them by the equation of incompressibility and the Tresca yield criterion 

V~eve%ge = 1, (ve" - v,'"jZ, + (l/v,n - I/v,=~)Z_~ = 2k (3.10) 

We shall write the tensor Eq.(2.5) in the form of a system of scalar equations. The 
components of the tensor F', Fe-l, F", L, 3flao are taken relative to the basis l", m", n". The 
matrices of the tensors F' and 8fifiao in this basis are diagonal 

[Fe] = diag(v,',v,', v3'), [af/&] = diag(O,l, - 1) (3.11) 

where IA1 is the matrix of the tensor A in the basis l", m", n". We denote the elements of 
the matrix Liz (i, k = 1, 2, 3): by 

L,, = av,iar, L,, = -ve cos $“ir, L,, = ve sin q'/r 

L,, = co8 *‘“L&/t%, L,, = v, co9 $“lr + 2c( (E) sin2 $" f l/,ry (E) >( 

sin 2$", L,, = [a (E) - vJ(2r)l sin 2$" + ry (E) cosa*” 

Lsl = -sin$l"dvel&, L,, = [a (E) - vJ(2r)l sin 29" - ry (E) >: 

sina $", L,, = v, sin2 $,“/r -i 2a (E) cos2 $;” - ‘12ry (E) sin ,247 

(3.12) 

The physical components of the material derivative of the tensor F" with respect to the 
load parameter E form a symmetric matrix and have the following form: 

F +r e* = (a/aE + v,aiar) v;! 

F,$. = -vg (vzc cos"+" j- vQp sina*" - vl').'j 

F,,” = -ve (vz’ - use) sin 2+“/(2r) 

Fd’ = (alaE + u,a/ar) (vZe cos2qf + use sins +") 

2Fei" = (aiaE + v,a,‘ar) l(v,e - v8e) sin 2+"] 

FZ," = (aiaE + v,aiaf) (use sir?*" + vQc COS~+~~J 

(3.13) 

We denote the elements of the symmetric matrix [Fe'] by Fike* (i. k = 1, 2.3): 

F C’ _ F 9’ 1 C’ ._ 
11 - ,r 3 fi,z - F;,j cos 9” + F,,“’ sin $” 

FIae’ = FTze’ cos 9 v n - F$ sin + 

F,,"' = F&sin 21&," + F& cosz$' + Fzze’ sina+” 

Fzse’ = Fgz cos 29" - 1,iz (F& - F,;“) sin 2$" 

Fase’ = - Fgz sin 2$" +- F& sin2 I$’ + F,,” cos2 I$” 

(3.14) 

Considering (2.5) as a matrix equation on the basis of the eigenvectors of the stress 
tensor I", m", n", taking into account formulas (3.11)-(3.14) and eliminating the multiplier 
A, we obtain the following system of five scalar equations: 

au,jar - F’7;‘j~le = 0 (3.15) 

vZEvQe (v,ir + 2a) + (vv’ -- v3”) sin 29°F:: - (v,' COS* 9" -t vZe sina I$“) F& - 

(use sin2 +" -C v2' cos2 $") F,:” = 0 

cos 9" (v,~al:e/ar - vz %e,b) - (vie i- vie) (cos tp”F$ -t sin $'F,z") = 0 

sin IV (v,e%.e/r - vlp2f3ve,!&) + (vie ~:- vze) (sin 1)" F$ - cos IJI,“F,,~‘) = 0 

Zry (E) (~‘~‘2 co9 Q” - c ,%e* sin2 II”) _+_ (2’ 3e + vze)(2a -. v,/r)sin 2$" - 

(I*: + L'~~)[(F~~" - F&i,) sin 211" + 2 cos2$'F&] = 0 
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Direct substitution of th& expression for F+$' and F,,e' from (3.13) into the third 
and fourth equation of system (3.15) shows, that they are equivalent and can therefore be 
reduced to the following equation: 

avPJiar - v& = 0 

The above relation is satisfied identically by virtue of assumption 3). Since tr [~~!I%J] = 
0, it follows that the equation of incompressibility Vl%~vge = 1 is equivalent to the 
equation 

au,./& + vJr = --2a. (E) (3.16) 

The condition that the axial velocity v, is continuous at the elastoplastic boundary, 
yields a = (%-I. From (3.16) it follows that v, = -a,r. Thus the velocity components v,, V, 
have the same form (3.5) in the plastic zone as in the region of the elastic kernel. It can 
be shown that the second equation of system (3.15) is satisfied identically after substituting 
into it the quantities Feee’. F,_“‘, Fe,” from (3.13). The first equation of system (3.15) and 
the condition of continuity at T=C 
within the plastic zone. 

will be satisfied provided that we assume that ~~~2 = E-1 
Equation (3.10) will be determined by the squares of the elastic 

strains 

(3.17) 

(c (E) < r < I?&‘/~, E 17 E*) 

After some reduction, we can write the last equation of system (3.15) in the form 

rd$“/ar - 2Eag”iaE + 2ry (E) E {[P (E) - I/,] ~0~2 IJ” _ [p (E) _I~ 

‘i,] sin2 q"} -+ 3P (E) sin 21#” = 0 

I’ (E) s [(2k)-” EY-2 f l/J’/: 

(c (E) < r < ROE-“*. E > E*) 

(3.18) 

The condition of continuity 9" =$' where the angle $' is given by formula (3.21, must 
hold when r = c. We therefore have 

tg Q" Irzc = E (25 - E2 - E-l)‘/: (9 + kY _ ~z)-’ (3.19) 

The angle $" represents a solution of the non-linear Cauchy problem (3.18), (3.19) for 
the first-order partial differential equation with free initial curve, whose integral can be 
found using the method of characteristics /8/. 

4. Qualitative analysis of the process of eZastopZastic deformation. We can carry out a 
qualitative analysis of the stress-strain state of a rod with torsion beyond the yield point, 
without the need to integrate the Cauchy problem (3.18), (3.19). We' note that the loading 
process is not simple, since the angle 4" depends on E, and the principal axes of the stress 
tensor change their orientation as E increases. The stress state corresponds to the edge 
u2 - u3 = 2k of the Tresca prism. The slip areas in the actual configuration have the 
normals vV .= cos($" - ni4)e, - sin&" - n/4) ee. The slip surfaces represent the cylindrical co- 
axial surfaces r = const. The tangential stress vector T' acting on the slip area has the 
following physical components: z," = 0, T{ = k cos (9” - n/4), T," = k sin (I#" - n/4). For this 
reason the slip lines, i.e. the lines tangent at every point to T", represent spiral lines 
wound around the cylinders r= Collst at a Constant angle+"--.7.'/t (for each cylinder r = const). The 
radial compression of the material represents a pure elastic deformation. This, however, does 
not mean that the rod, which has been twisted beyond its yield point with the torsional load 
then removed, will return to its reference (natural) state. Indeed, the elastic part of the 
defromation is fully reversible only in the case of conceptual processes terminating in com- 
plete unloading. 

Thus we can regard the complete elastoplastic deformation of a rod under torsion as the 
superposition of a pure elastic deformation caused by radial compression, and shear deformation 
along the spiral lines whose geometry is wholly determined by the angle 11". The plane cross- 
sections of the rod remain plane during the elastoplastic deformation. They are displaced 
along the z axis with velocity v, =- z’E, with simultaneous rotation about the z axis with an 
angular velocity of y (E)z. 

The peripheral component of the velocity ug is determined with the accuracy up to the 
multiplier y (E). If we admit the solutions in which the tangential component of velocity has 
a discontinuity along the slip surfaces, then Y (E) will, in principle, be an arbitrary func- 
tion of the load parameter. Therefore, the possibility arises of constructing, for every, 
arbitrary chosen function Y (E), a consistent stress field which is continuous everywhere. 



Calculating the torsional moment and axial force, we obtain 

A&I’ 

M -z ‘/,&E’J’-’ (2e - E2 __ E-l)% $ 2,& s r9 sin 2$"dr 

N = ma (ES - E-l) Y -1 + ~/gcc” (E-‘Z_ 1 - l,J,;(28 - E” - ,?-I) + 

‘A l/gz (R,aEml - 9) (Z, (kY + e - E-‘) + Xl [(kY + e)-l - E]) - 
R&‘I. 

nk ( RoaEml - c”) - 6nk i r co9 q”dr 
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(4.0 

The radius of the elastic kernel r = c(E) is found from the equation N = 0. Therefore, 

the position of elastoplastic boundary and the torsional moment corresponding to the elongation 
E will depend on the choice of angular velocity Y(E)2 of material flow within the plastic 
zone. The problem of torsion cannot be solved within the framework of the theory of flow 
under finite deformation, since the principal directions of the stress tensor depend on the 
choice of velocity field. 

Let us consider the critical state, when the whole material of the rod passes into the 
state of plastic flow. The value of the elongation E = E, at which the critical state is 
reached can be found as follows. We have, by virtue of the symmetry ctg$" I?=,, = 0, and there- 

fore from the initial condition (3.19) it follows that the limit elongation E, is the root 
of the equation 

--Z,E* + Z_,E3 + 2kE2 + B,E - Z_, = 0 (4.2) 

which should exceed the value of E* satisfying the inequality E*> 1. Thus the quantity E, 
which depends on the coefficients of the reaction X,, 8_, and yield point k may serve as 
the criterion of the passage of the rod to its critical state under torsion. Passing to the 
limit in (4.1) as E-t E,, we obtain 

-'It R.E* 

M,= S r* sin 21jf jEzE+ dr (4.3) 
0 

where E, is the root of (4.2). 
According to the theory of small deformations, the magnitude of the limiting torsional 

moment is found as follows /9/: 
M,Inr = 2/3nkRoS (4.4) 

Estimating the integral on the right-hand side of (4.3) and using relation (4.4), we 
obtain the estimate 

M,/Mt”’ < E;” < 1 (4.5) 

which can be used as the basis of the following assertion: the limiting torsional moment of a 
cylindrical rod of radius R, calculated from the geometrically non-linear theory of flow, is 
at least E,‘l* times smaller than the limiting torsional moment determined using the theory 
of flow under small deformations, provided that one and the same yield condition (2.1) is used 
in both theories. 

5. The complete solution of the eZastoptastic probtem of torsion. The complete solution 
of the problem is given by formulas (3.7), (3.81, (3.101, (3.17) and (4.1). The angle .IJ" is 
given by the integral of the Cauchy problem (3.18), 
curvilinear triangle bounded by the curves 

(3.19) ?nd must be determined within a 
r = c (E), r = R,IE’I-, E = E, in the plane r, E. The 

Cauchy problem is formulated correctly, since the curves r = RJ-'I*, r = O represent the 
characteristics of the differential Eq.(3.18). After changing the variables 

E = lnr, 11 = In E'/', w = In tg 9" + 6 S [(2k)-a (eG, - e-‘1X_,)* + I/~]‘:: dq 

we can write (3.18) in the form 

awjaE - awjaq + 2y (ezq) e2q+E x 
(efi(W [P (eZS) - l/J e? - e-WI) [P (e”Q) + 1/2] em} = 0 

h(q) = 6 1 [(2k)-a (e”Z, - e-“Z_,)* + ‘/J’/*dq 

(5.1) 
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The integral h(q) can be expressed in terms of elliptic integrals of the first and 
second kind as follows: 

After changing 
Eq.(5.1) is reduced 
ameter) 

‘I& b-d = (‘14 + @%‘)I’. [F (e, 6) - J3 (8, 6) + 
14” (q) + ‘/,I*‘, [q* (q) - 4aabal’~~lq (q) 

E = arccos [2ablq (q)], 6 = (1 + 1&Pba)-% 

U* s Z,/(2k), ba E --Z_,/(2k), q (q) s &‘l f bk?l 

to new variables 01, n !w = E + q) and making the substitution x= e0, 
to an ordinary Ricatti differential equation (o occurs in it as a par- 

avaq = 2eey (em)eq {&Q[P (ezfl) -1/a] - e-h(n) [P(@) + l/a] x*] = 0 (5.2) 

Let us substitute the variable n according to the formula 

x = 2 S y (es”) eQ-h(q) [P (e”) + l/.J dq (5.3). 

and write P (x) = ,+(q) [P (e"q) - 'i,]/[P (e'q) + l/,1, where n should be replaced by the inversion of 
the integral (5.3). Then (5.2) becomes 

e-Wx/& = D (x)' x2 (5.4) 

The function a(x) is found from the angular velocity of material flow in the plastic 
zone. 

The general integral of the Ricatti Eq.(5.4), and hence the integral of the Cauchy problem 
(3.18), (3.19), can be obtained using the method of quadratures, if at least one particular 
solution is known.It is best to seek this particular solution in the form of a series in powers 
of!% (we can always shift the origin of the expansion if necessary) 

The coefficients of the expansion x,, are given by the following recurrence formula: 

tn -1 

(m + 1) c-~x~+~ = Q2,, - 3 ,ypxm_p, m = 2,3, . . 
p=1 

x1 = PQ,, x2 = WQ, 

The formal series in powers of x representing the integral x(x, o) of the Ricatti Eq. 
(5.4), will also be the actual solution of the Ricatti equation by virtue of the Cauchy theorem 
on the existence and uniqueness of an analytic solution of a differential equation with 
analytic right-hand side (see e.g. /lo/), provided that C(X) is an analytic function of X. 
The last condition is satisfied if the angular velocity Y (e"? is a positive analytic function 
of 1. Indeed, in this case there exists an analytic function (inversion of the integral (5.3)) 

q=rl(x) t and since + (q), ~(e'~) are analytic functions of q, it follows that the function n(x) 
will also be analytic. It also follows from the Cauchy theorem mentioned above, that the 
recurrence relations for Xni converge. 

The solution of the problem of the torsion of a cylindrical rod given here is complete, 
since the stress tensor as well as the velocity field in the elastic and plastic zones are all 
determined. 

1. 

2. 

3. 

4. 
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ON THE FORMULATION OF THE CONTACT PROBLEM OF ELASTIC PLASTICITY* 

YU.1. NYASHIN and S.A. CHERNOPAZOV 

A differential and a variational formulation of the problem of contact 
interaction between an elastic-plastic body and a rigid support are 
examined. Equations of the theory of plastic flow with isotropic 
hardening, which is a particular modification of the Il'yushin theory of 
elastic-plastic processes /l, 2/, are taken as governing relationships. 
A proof is presented of the existence and uniqueness of the generalized 
solution. To simplify the description the problem is considered in a 
Cartesian rectangular system of coordinates. 

Contact problems with governing relationships of the deformation theory of plasticity are 
presented in /3/. Variational formulations utilizing generalized governing relationships of 
plasticity are formulated in /4, 5/. However, the constraints mentioned there on the 
generalized governing relationships are obviously inadequate for the uniqueness of the 
soluton. 

1. Differential formulation of the probtem. A quasistatic strain process is considered 
for an elastic-plastic body occupying a domain 8 in R3 with a smooth boundary S. It is 
assumed that the displacements and the gradientsof the displacements are small,and consequently, 
the squares of the gradients as well as the rotations of body elements can be neglected, and 
the connection to the side of the rigid support is considered to be ideal and unilateral. The 
problem is formulated in a reference system fixed with respect to the rigid support. The 
Mises plasticity condition is taken as the loading surface. 

It is assumed that the domain under investgation Q can consist of two parts at each 
instant: Qe={XEQIUi(X)<OT} and $1:' = {xEs2[uoi(x)= UT}. Here Us is the stress intensity. 
Material strain occurs elastically in the domain Q'; in the general case the domain Qp con- 
sists of an active loading zone Q!'O and an unloading zone 51”’ , not known in advance and to 
be determined. 

The conditions governing the above-mentioned zones have the form (f =o,--,,., gij = afj&,,,): 

if ~~52" and gijdS<j < 0, then x E W', 
if XER" and g,.$S,j > 0, then x E Q"". 

We write the governing relationships in the domain P as 

dSij E 2G (deij--dhgij)> du=Kde (1.1) 

where do, de are increments of the mean pressure and the mean strain. The scalar factor dh 
equals zero in the domains Qe and W". In the domain RI" 


